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Abstract: Autonomous precision placement of parafoils is challenging because of their limited
control authority and sensitivity to winds. In particular, when wind speed is near the airspeed,
guidance is further complicated by the parafoils inability to penetrate the wind. This article speci-
fically addresses the terminal phase and develops an approach for generating optimal trajectories
in real-time based on the inverse dynamics in the virtual domain. The method results in efficient
solution of a two-point boundary-value problem using only a single optimization parameter
allowing the trajectory to be generated at a high rate, mitigating effects of the unknown winds.
It is shown through simulation and experimental results that the proposed algorithm works well
even in strong winds and is robust to sensor errors and wind uncertainty.

Keywords: optimal control, parafoils, predictive control, trajectory optimization

1 INTRODUCTION

Precision payload delivery using guided parafoils has
extended military re-supply capability by providing
accurate and rapid response at substantial offsets with
a minimal risk to the cargo delivery aircraft. Signifi-
cant efforts have been underway to improve precision
airdrop with the US Department of Defense’s Joint Pre-
cision Airdrop System (JPADS) programmes [1] being
an example. The JPADS self-guided programmes are
separated into five classes according to size: micro
light weight (MLW) 4–70 kg, ultra light weight (ULW),
100–320 kg, extra light (XL) 320–1000 kg, light (L) 2200–
4500 kg, and medium (M) 6800–14 000 kg [2]. Most
existing efforts have focused on larger systems above
200 kg including; Onyx from Atair Aerospace, Panther
from Pioneer Aerospace, Screamer from Strong Enter-
prises, and Spades from Dutch Space all demonstrated
at the Precision Airdrop Technology Conference and
Demonstration in 2007 [3]. Recently, there has been
a new focus on smaller systems with the start of the
Joint Medical Distance Support & Evacuation (JMDSE)

∗Corresponding author: Department of Mechanical and Aerospace

Engineering, University of Alabama in Huntsville, Technology Hall,

Huntsville, Alabama 35899, USA.

email: slegers@mae.uah.edu

programme in 2009.The JMDSE programme is focused
on small medical equipment delivery in the MLW and
ULW classes and the integration into small unmanned
autonomous systems.

Autonomous parafoils for precision delivery are
unique aerospace systems with challenges includ-
ing limited control authority and sensitivity to winds.
Parafoils typically only have lateral control using
asymmetric brake deflection, with longitudinal con-
trol using symmetric deflection being very limited. The
absence of thrust, combined with low airspeed, makes
wind a significant contributor to a parafoil’s trajectory.
Airspeed for parafoils can range from 6 m/s for very
small lightly loaded systems to over 20 m/s for larger
systems. This results in the common occurrence for
parafoils where the wind speed may be near or exceed
the airspeed. In the case where wind speed exceeds
airspeed, the parafoil cannot advance towards the tar-
get if the target is upwind. This becomes increasingly
likely for parafoils in the MLW class.

Guidance strategies for parafoils vary significantly
over the spectrum of systems; however, there are some
common aspects seen in all systems. One common
aspect is the parafoil is released upwind of the target
at a sufficient altitude to ensure that the target can
be reached. In addition, all strategies have some com-
bination of homing and energy management phases
followed by terminal guidance. Homing refers to the

Proc. IMechE Vol. 225 Part G: J. Aerospace Engineering
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process of bringing the system from one region to
another region while energy management refers to
loitering in a pattern allowing the system to reach
an altitude where the parafoil can proceed to impact
the target. Assuming homing and energy management
stages bring the parafoil to a location where arriving at
the target in the presence of wind is possible, the termi-
nal guidance algorithm determines the final accuracy.
Homing and energy management are necessary, but
not critical, in determining final accuracy because it
is relatively easy to bring the system to the target, but
quite difficult to plan terminal guidance to co-ordinate
arriving at the target and ground simultaneously.

Examples of simple strategies are Onyx by Atair
Aerospace [3, 4] and Screamer by Strong Enterprises
[3] where homing takes the system to the target,
energy management is a spiral around the target at
a varying radius, followed by terminal guidance as a
straight path near the ground. In theory, this simple
strategy limits the error to the spiral radius. How-
ever, in practice the strategy is limited to the case
where wind speed is significantly less than airspeed in
order to remain over the target and maintain guidance
stability [5] making it unsuitable for high wind-to-
airspeed ratios. Another limitation of the spiraling
strategy is that it cannot guarantee landing into the
wind, which is preferred because it minimizes speed
at impact. Several other types of guidance concepts
for parafoils have also been developed, including opti-
mal control, trajectory databases, model predictive
control, and direct glide slope control [6–10]. More
recently, terminal guidance strategies using optimal
trajectories have been investigated. Carter et al. devel-
oped a method for generating bandwidth limited
optimal terminal guidance trajectories [11]. Limiting
the trajectory bandwidth results in trajectories that
are easily tracked. The trajectory was parameterized
using five parameters with the optimization problem
iteratively solved to minimize final position and head-
ing error. Rademacher et al. [12] proposed a hybrid
approach where optimal trajectories were found using
either modified Dubins paths or minimum control
trajectories with multiple optimization parameters.
The hybrid strategy was employed, because each
method had different initial conditions where nume-
rical robustness was a problem or non-existence of
solutions existed. In both references [11] and [12],
kinematic parafoil models were used and the optimal
trajectories were tracked using proportional-integral-
derivative (PID) controllers.

This article develops an optimal terminal guidance
algorithm that is robust in high winds even if the
wind speed exceeds the parafoil’s airspeed. An opti-
mal terminal trajectory is found using a kinematic
model similar to references [11] and [12]. However,
using the direct method of calculus of variations and
inverse dynamics in a virtual domain, the problem is
reduced to a single parameter optimization problem

[13]. The result is an extremely efficient solution that is
easily solved in real-time. In addition, since the entire
terminal trajectory is solved, a model predictive con-
troller (MPC) [8] is used to track the trajectory rather
than a PID algorithm. A complete six degrees-of-
freedom (DoF) model is used to evaluate the method
in simulation and demonstrate its application includ-
ing parafoil turning dynamics. Finally, experimental
results are shown where the algorithm was used on a
small 2.3 kg parafoil.

2 GUIDANCE STRATEGY

In order to ensure the parafoil system can reach a
desired target it is released upwind of a target at high
altitudes. The result is typical parafoil precision place-
ment algorithms having an energy management and
homing region. The proposed strategy for precision
placement shown in Fig. 1 is divided into four phases
with the first being energy management, the second
homing, followed by terminal guidance comprising a
final turn and final approach (FA). Guidance geometry
is defined by the target location and four parameters:
an away distance, cycle distance, turn diameter, and
wind heading angle.

Energy management is commenced after the sys-
tem is released. The parafoil travels clockwise around
the rectangular region defined by the away distance,
cycle distance, and turn diameter. The away distance
is selected so that in the case of wind speed exceed-
ing airspeed the parafoil will still be able to reach
the target, while in energy management, the parafoil
continually estimates descent rate and wind speed.
Descent rate and wind speed estimates, combined
with a distance from the target, are used to determine
an altitude zstart where energy management is termi-
nated and homing commences. In the homing phase

Fig. 1 Guidance strategy

Proc. IMechE Vol. 225 Part G: J. Aerospace Engineering
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the system travels toward the target while continuing
to estimate wind and vertical velocity. All estimated
data are used to determine a turn initiation point (TIP)
at a distance Dswitch downwind of the target where ter-
minal guidance will begin. Terminal guidance starts
with a final turn followed by an FA into the wind.

3 TERMINAL GUIDANCE

Development of energy management and homing
strategies is flexible with the only requirement being
that the parafoil is brought near the TIP with sufficient
altitude. In contrast, terminal guidance is the most
critical stage of parafoil precision placement with a
very strict time limitation. The parafoil can be slightly
late or earlier departing to and arriving at all other
phases, but terminal guidance ends sharply at landing
requiring special precautions to be made in building
a control algorithm. An ideal terminal guidance tra-
jectory is described in Fig. 2 where, iI, and jI , are axes
of the standard North–East–Down inertial reference
frame, and iT, and jT are target axes aligned with the
wind W . The parafoil is a distance L upwind of the
target, tstart is the current time, and R is the final turn
radius.

The final turn is initiated at the TIP, occurring at
time t0, a distance Dswitch past the target. After the
TIP is reached the final turn is defined by a com-
manded yaw ψ(t) occurring from time t0 until the FA is
reached at time t1. The resulting final turn time is then
Tturn = t1 − t0. The desired FA time Tapp is t2 − t1 where
t2 is at touchdown. Transition from the final turn to the
FA occurs at texit.

In terminal guidance described above, the target
location R, and a desired Tapp are specified, while the
wind W is estimated online and the altitude z and L are
measured. The terminal guidance problem can then
be summarized as follows. For a parafoil in the pres-
ence of wind W , at altitude z, and a distance L from

Fig. 2 Terminal guidance manoeuver

the target, find the distance Dswitch to the final TIP for
an ideal impact at t2.

In general, the dynamic model of a parafoil is com-
plex and non-linear, so that the problem can only be
solved numerically. However, some assumptions can
be made, allowing an analytical solution to be used as
a reference trajectory. These assumptions are a slow
turn rate, so that the roll and sideslip angles can be
ignored, and nearly constant descent rate Vv and hori-
zontal airspeed Vh. In this case it immediately follows
that

t2 = tstart − zstart

Vv
(1)

The problem reduces to a kinematic model repre-
sented by three components of the ground velocity in
the target axes⎡

⎣ẋ
ẏ
ż

⎤
⎦ =

⎡
⎣−W + Vh cos ψ

Vh sin ψ

Vv

⎤
⎦ (2)

where x, y, and z are positions in the target frame. Now,
the commanded turn ψ(t) can be chosen as any func-
tion that satisfies the boundary conditions ψ(t0) = 0
and ψ(t1) = −π with respect to the wind while satis-
fying the constraint that the distance travelled in jT is
−2R. For a constant turn rate, the solution to the final
turn time Tturn and turn rate are

ψ̇ = −Vh

R
(3)

Tturn = πR
Vh

(4)

Hence, the most straightforward algorithm to con-
trol the final turn, is to track the turn rate −Vh/R.
Assuming that the wind W is constant and using
the commanded turn rate ψ̇ c = −Vh/R, integration of
inertial velocities along iT and jT from tstart to t2 yield

Dswitch +
∫ t1

t0

ẋ dt +
∫ t2

t1

ẋ dt

= Dswitch − WTturn − (Vh + W )Tapp = 0 (5)

z + Vv

(
L + Dswitch

Vh − W

)
+ VvTturn + VvTapp = 0 (6)

Equations (5) and (6) can then be solved for Dswitch

and Tapp resulting in

Dswitch = WTturn +
(

V 2
h − W 2

2Vh

)

×
(−z

Vv
− Tturn − L + WTturn

Vh − W

)
(7)

Tapp =
(

Vh − W
2Vh

) (−z
Vv

− Tturn

)
− L + WTturn

2Vh
(8)

From equations (7) and (8) it can be seen that the
higher the altitude z, the larger Dswitch and Tapp become.

Proc. IMechE Vol. 225 Part G: J. Aerospace Engineering
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Fig. 3 Simulated guidance in ideal conditions (•TIP and
FA W = −3.4 m/s, � TIP and FA W = −7.7 m/s)

As the parafoil loiters upwind of the target, zstart the alti-
tude at which to turn towards the target can be found
using a desired FA time T des

app. The switching altitude to
exit energy management which achieves T des

app is then
given by solving equation (8) for z, resulting in

zstart = −Vv

(
Tturn + L + WTturn

Vh − W
+ 2Vh

Vh − W
T des

app

)
(9)

Once the system is homing towards the target the
goal is to bring the system to the point defined by x =
Dswitch and y = −2R with Dswitch continually estimated
during homing using equation (7) and current esti-
mates of Vh, Vv, and W . A desired FA time T des

app is used
in equation (9) in making the decision to exit energy
management. However, disturbances, measurement
error, and tracking error while homing will alter the
ideal terminal guidance resulting in an actual Tapp

being estimated during homing using equation (7).
Figure 3 demonstrates trajectories starting 150 m

upwind of the target when there are no disturbances
and the commanded yaw rate is tracked precisely
for a horizontal airspeed of 6.82 m/s, descent rate of
3.05 m/s, turn radius of 37.5 m, and a desired FA time
T des

app of 7.5 s. Trajectories for two wind magnitudes are
shown, −3.4 and 7.7 m/s, resulting in the wind speed
being 50 per cent and 110 per cent of the airspeed.
The manoeuvre in winds of 50 per cent of the air-
speed starts at an altitude of 110 m resulting in the
TIP at a distance Dswitch of −33.3 m and the FA begin-
ning 25.7 m downwind of the target. In contrast, when
the wind speed is 110 per cent of the airspeed the
manoeuver starts at an altitude of 78 m with the TIP
at a distance Dswitch of −137 m and the FA beginning
6.0 m upwind of the target, with the parafoil travelling
backwards at impact.

Fig. 4 Final turn trajectories with initial condition errors

In practice, sensor errors, uncertain winds, and
imperfect control will disturb the ideal touchdown
depicted above. Figure 4 shows Monte Carlo simula-
tions with W = −3.4 m/s, where it is assumed error
in the initial horizontal position, heading, and wind
occur at the beginning of terminal guidance. The
standard deviation was assumed to be 6 m in each
co-ordinate, 10◦ in heading, and 0.5 m/s in wind speed.
As seen from Fig. 4, these errors result in spreading
the arrival to the FA point. Therefore, while the sim-
plified algorithm may provide a reasonable strategy
for exiting the energy management phase, an effec-
tive terminal guidance strategy must compensate for
sensor errors and varying winds during the final turn.

4 OPTIMAL TERMINAL GUIDANCE

To overcome tracking errors and unaccounted winds,
the following two-point boundary-value problem
(TPBVP) is formulated. Staring at t = 0 with the state
vector defined as x0 = [x0, y0, ψ0]T, the system influ-
enced by the last known wind needs to be brought
to another point, xf = [(Vh + W )T des

app, 0, −π]T at t = tf .
Hence, they need to find the trajectory that satisfies
these boundary conditions along with a constraint
imposed on yaw rate, |ψ̇ | � ψ̇max, while finishing the
manoeuver in exactly Tturn seconds.The optimal ψ(t) is
then tracked by the guidance unit using any appropri-
ate control algorithm. Errors and unaccounted winds
will not allow exact tracking of the calculated optimal
trajectory; therefore, computation of an optimal tra-
jectory will be updated during the final turn, each time
starting from the current state, requiring the system
to arrive at xf = [(Vh + W )T des

app, 0, −π]T in Tturn seconds
from the beginning of the turn. The remaining time

Proc. IMechE Vol. 225 Part G: J. Aerospace Engineering
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until arrival at the FA is computed as

tf = − z
Vv

− T final
app (10)

where T final
app is the final calculated approach time from

equation (8) before entering the final turn.
Development of the optimal trajectory algorithm

begins by recalling from equation (2) the target frame
horizontal trajectory kinematics

[
ẋ
ẏ

]
=

[−W + Vh cos ψ

Vh sin ψ

]
(11)

Recognizing that if the final turn horizontal trajec-
tory is given by equation (11) the yaw angle along
this trajectory is related to the change of inertial
co-ordinates as

ψ = tan−1 ẏ
ẋ + W

(12)

Differentiating equation (12) provides the yaw rate
control

ψ̇ = ÿ(ẋ + W ) − ẍẏ
(ẋ + W )2 + ẏ2

(13)

required to follow the reference final turn trajectory
in presence of constant wind W . The inertial speed
along the trajectory will also depend on the current
yaw angle

VG = √
ẋ2 + ẏ2 =

√
V 2

h + W 2 − 2VhW cos ψ (14)

Now, following the general idea of direct methods
of calculus of variations [13] the solution of the
TPBVP will be represented as functions of some scaled
argument τ̄ = τ/τf ∈ [0; 1]

x(τ̄ ) = P1(τ̄ ) = a1
0 + a1

1 τ̄ + a1
2 τ̄

2 + a1
3 τ̄

3

+ b1
1 sin(πτ̄ ) + b1

2 sin(2πτ̄ )

y(τ̄ ) = P2(τ̄ ) = a2
0 + a2

1 τ̄ + a2
2 τ̄

2 + a2
3 τ̄

3

+ b2
1 sin(πτ̄ ) + b2

2 sin(2πτ̄ )
(15)

Coefficients aη

i and bη

i (η = 1, 2) are defined by the
boundary conditions up to the second-order deriva-
tive at τ = 0 and τ = τf (τ̄ = 1). According to the prob-
lem formulation and equation (11), these boundary
conditions are[

x
y

]
τ=0

=
[

x0

y0

]
,

[
ẋ
ẏ

]
τ=0

=
[−W + Vh cos ψ0

Vh sin ψ0

]
,

[
ẍ
ÿ

]
τ=0

=
[−ψ̇0Vh sin ψ0

ψ̇0Vh cos ψ0

]
(16)

[
x
y

]
τ=τf

=
[
(Vh + W )T des

app

0

]
,

[
ẋ
ẏ

]
τ=τf

=
[−W − Vh

0

]
,

[
ẍ
ÿ

]
τ=τf

=
[

0
0

]
(17)

While final condition equation (17) will be constant,
initial conditions will reflect the current state of the
system at each cycle of optimization. Differentiation
of equation (15) two times with respect to τ results in

τf P ′
η(τ̄ ) = aη

1 + 2aη

2 τ̄ + 3aη

3 τ̄
2 + πbη

1 cos(πτ̄ )

+ 2πbη

2 cos(2πτ̄ )

τ 2
f P ′′

η (τ̄ ) = 2aη

2 + 6aη

3 τ̄ − π2bη

1 sin(πτ̄ )

− (2π)2bη

2 sin(2πτ̄ ) (18)

Equating equation (18) at the terminal point to
the known boundary conditions equations (16) and
(17) yields a system of linear algebraic equations for
coefficients aη

i and (bη

i η = 1, 2). For instance, in the
x-co-ordinate

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 1 1 1 0 0
0 1 0 0 π 2π

0 1 2 3 −π 2π

0 0 2 0 0 0
0 0 2 6 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
0

a1
1

a1
2

a1
3

b1
1

b1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

xf

x′
0τf

x′
f τf

x′′
0τ

2
f

x′′
f τ

2
f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

Resolving equation (19) yields

a1
0 = x0, a1

1 = −(x0 − xf ) + (2x′′
0 + x′′

f )τ
2
f

6
,

a1
2 = x′′

0τ
2
f

2
, a1

3 = − (x′′
0 − x′′

f )τ
2
f

6

b1
1 = 2(x′

0 − x′
f )τf + (x′′

0 + x′′
f )τ

2
f

4π

b1
2 = 12(x0 − xf ) + 6(x′

0 + x′
f )τf + (x′′

0 − x′′
f )τ

2
f

24π

(20)

The only problem is that derivatives in equation (20)
are taken in the virtual domain, while the actual
boundary conditions are given in the physical domain.
Mapping between the virtual domain [0; τf ] and phys-
ical domain [0; tf ] is addressed by introducing a speed
factor λ

λ = dτ

dt
(21)

Using this speed factor the authors may now
compute corresponding derivatives in the virtual

Proc. IMechE Vol. 225 Part G: J. Aerospace Engineering
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domain using the differentiation rules valid for any
time-variant parameter ξ

ξ̇ = λξ ′, ξ̈ = λ(λ′ξ ′ + λξ ′′) (22)

Inverting equation (22) yields

ξ ′ = λ−1ξ̇ , ξ ′′ = λ−2ξ̈ − λ′λ−1ξ̇ (23)

needed to transfer the boundary conditions.The speed
factor λ simply scales the entire problem – the higher
speed factor λ is, the larger τf it results in reference
[14] – one may let λ = 1 and λ′ = 0 at the boundary
conditions which means one can safely assume at
the boundary conditions ξ ′ = ξ̇ and ξ ′′ = ξ̈ .

Finding the optimal solution among all candidate
trajectories described by equation (15) begins by first
guessing a value of the only varied parameter τf . For
the initial value of τf one can take the length of the
circumference connecting terminal points as

τf = π

2

√
(xf − x0)2 + (yf − y0)2 (24)

Coefficients of the candidate trajectory are com-
puted using equation (20) with the boundary condi-
tions equations (16) and (17) converted to the virtual
domain. Having an analytical representation of the
candidate trajectory equations (15) and (18) defines
the values of xj , yj , x′

j , and y ′
j , j = 1, . . . , N over a fixed

set of N points spaced evenly along the virtual arc [0; τf ]
with the interval

�τ = τf (N − 1)−1 (25)

so that

τj = τj−1 + �τ , j = 2, . . . , N , (τ1 = 0) (26)

Next, for each node j = 2, . . . , N compute

�tj−1 =
√

(xj − xj−1)2 + (yj − yj−1)2

V 2
h + W 2 − 2V W

h cos ψj−1
(27)

(ψ1 ≡ ψ0), and

λj = �τ�t−1
j−1 (28)

The yaw angle ψ can now be computed using the
virtual domain version of equation (12)

ψj = tan−1
λjy ′

j

λjx′
j + W

(29)

Finally, the yaw rate ψ̇ is evaluated simply as

ψ̇j = (ψj − ψj−1)�t−1
j−1 (30)

Fig. 5 Comparison of optimal and constant turn rate

When all parameters are computed at each of the
N points, one can compute the performance index

J =
⎛
⎝N−1∑

j=1

�tj − Tturn

⎞
⎠

2

+ kψ̇� (31)

where

� = max
j

(
0;

∣∣ψ̇j

∣∣ − ψ̇j max

)2
(32)

with kψ̇ being a weighting coefficient.
The optimal trajectory problem based on the direct

method has now been turned into a single-parameter
optimization problem where τf is found such that
equation (31) is minimized subject to the system in
equations (2) and (11). The problem is solved using
a non-gradient optimization numerical algorithm
based on the golden section search and parabolic
interpolation method [15]. Reduction of finding an
optimal terminal trajectory to a single-parameter opti-
mization results in short computation times. To be
more specific, a 16-bit 80 MHz microprocessor allowed
computation of a 17.5 s turn manoeuver with N = 25
in ten iterations, in only 0.07 s.

As a demonstration of the proposed approach, Fig. 5
shows an example of the optimal final turn for the case
in Fig. 3 when W = −3.4 m/s. The optimal final turn
and constant turn rate commands are similar; how-
ever, as opposed to the constant turn rate, the yaw
angle changes smoothly at departure from the TIP and
arrival at the FA. As a result, the optimal turn trajectory
is slightly different but, more importantly, the system
still captures the FA in exactly Tturn seconds. Therefore,
the authors have a tool allowing construction of the
optimal trajectory from any initial point to the pre-
determined final. To this end, Fig. 6 shows that using
the same initial errors from Fig. 4 the optimal turn is
found so that the systems still arrive at the FA in the
predetermined time, Tturn.

Implementation of the algorithm on actual parafoil
systems requires three additional components to
make it more robust in practice: compensation for
full dynamic motion, wind disturbance mitigation,
and terminal trajectory tracking errors. The kinematic
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Fig. 6 Optimal guidance with an error in the TIP

model in equation (2) does not account for parafoil
turning dynamics and assumes that the sideslip and
roll angles are small. When the turn rate is sufficiently
small, or the radius R is large, the model in equation (2)
provides sufficient accuracy. However, in order to track
the desired trajectory for a wide range of R, the error
from sideslip and turning dynamics can be compen-
sated by adding an additional commanded ψc for
the first tpre seconds after the TIP has been reached.
Specifically, for the first tpre seconds of the maneuver
the command yaw ψc produced by equation (29) is
augmented as

ψ̃c = ψc − Kturn
Vh

R
(33)

where Kturn is the correction gain and Vh/R is the
required constant turn rate in equation (4). Distur-
bances from wind and sensor errors during tracking
of the optimal trajectory will result in errors in the
FA arrival. These errors can be accommodated by
updating the optimal trajectory from the current con-
ditions to the desired FA point during the final turn.
Re-computation of the optimal trajectory is scheduled
so that a specified number of updates occur at equal
intervals over the period from t0 to texit. Finally, the
FA location, xf in equation (17), assumes that during
the FA the parafoil travels directly to the target by the
shortest path. In practice, disturbances and the guid-
ance algorithm results in a trajectory with less than
perfect efficiency at reaching the target. In order to
correct for realistic errors during the FA the location xf

is corrected to be

xf = VhT des
app εfinal (34)

where εfinal is the FA efficiency.

5 PRECISION PLACEMENT SIMULATION

In the previous development of an optimal terminal
trajectory a kinematic model was used and it was
assumed the trajectory was tracked perfectly. How-
ever, actual parafoil systems have turning dynamics
resulting in side slip and varying descent rates. Evalu-
ation of the proposed algorithm will be done using a
higher fidelity model. The combined parafoil canopy
and payload can be modelled using six DoF, which
include three inertial position components of the sys-
tem mass centre as well as the three Euler orientation
angles of the parafoil–payload system, yaw ψ , pitch θ ,
and roll ϕ. The 6 DoF model described in reference [9]
is used in all simulations with a constant canopy inci-
dence angle Γ , payload drag included in the system
aerodynamic coefficients, and the canopy apparent
mass approximated by assuming the canopy has two
axes of symmetry.

The guidance strategy outlined in sections 2 to 4
requires a controller that tracks a commanded yaw ψ c ,
using the brake deflection δa. A simple two DoF model
of the roll and yaw dynamics can be used for develop-
ing a yaw controller since for parafoils, pitch and speed
are not typically controllable. The state vector for the
two DoF rotational model is x = [φ, ψ , p, r]T, where
p and r are the parafoil roll and pitch rates. A wide
range of trajectory tracking controllers used on UAVs
could be used [8, 16], however, MPC is selected since
the optimal terminal guidance prescribes a desired ψc

over the terminal trajectory horizon. The rotational
kinematics and dynamics described in reference [9]
are non-linear and thus linearized to take advantage of
well-developed control techniques for linear systems.
Assuming that the aerodynamic velocity Va is con-
stant, the non-linear model with parameters listed in
Appendix 2 can be numerically linearized resulting in
a linear discrete model for the parafoil with sampling
period of 0.5 s

⎡
⎢⎢⎣

φ̇

ψ̇

ṗ
ṙ

⎤
⎥⎥⎦

k+1

=

⎡
⎢⎢⎣

0.962 0 0.153 0.012
0.0078 1 −0.011 0.043
−0.103 0 0.033 0.004
0.0191 0 −0.0023 −0.003

⎤
⎥⎥⎦

⎡
⎢⎢⎣

φ

ψ

p
r

⎤
⎥⎥⎦

k

+

⎡
⎢⎢⎣

−0.006
0.0501

−0.0131
0.1098

⎤
⎥⎥⎦ δa;k (35)

For a given desired discrete output vector ψc =
[ψc

k+1, ψc
k+2, . . . , ψc

k+Hp
]T that spans the prediction hori-

zon Hp, MPC solves for the discrete optimal control
vector U = [uk , uk+1, . . . , uk+Hp−1]T governed by the
linear plant xk+1 = Axk + Buk with output yk = Cxk

[8, 17]. The single-input single-output parafoil model
above has the output matrix C = [0 1 0 0]. The discrete
linear model can be used to estimate the future state
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of the system as

ψ̂
c = KCAxk + KCABU (36)

from the current state vector xk , and the control vector
U, where

KCA =

⎡
⎢⎢⎢⎣

CA
CA2

...
CAHp

⎤
⎥⎥⎥⎦ (37)

KCAB =

⎡
⎢⎢⎢⎢⎢⎢⎣

CB 0 0 0 0
CAB CB 0 0 0
CA2B CAB CB 0 0

...
...

...
. . . 0

CAHp−1B · · · CA2B CAB CB

⎤
⎥⎥⎥⎥⎥⎥⎦

(38)

In MPC, the optimization problem is cast as a finite-
time discrete optimal control problem. To compute
the control input at a given time instant, a quadratic
cost function is minimized through the selection of
the control history over the control horizon. The cost
function can be written as

J =
(
ψc − ψ̂

c
)T

Q
(
ψc − ψ̂

c
)

+ U TRU (39)

where Q and R are symmetric positive semi-definite
matrices of size Hp × Hp that penalize tracking error
and control, respectively. The control U , which mini-
mizes equation (39), can be found analytically [17] as

U = (
KT

CABQKCAB + R
)−1

KT
CABQ

(
ψc − KCAxk

)
(40)

Equation (40) contains the optimal control inputs
over the entire control horizon. In practice, only the
first control is applied and the problem is updated at
the next time update.

Implementation of the terminal guidance algorithm
requires both determining the optimal terminal tra-
jectory using the method outlined in section 4 and
the trajectory tracking controller in equation (40). The
first step in the complete terminal guidance algorithm
is to use the current measured parafoil position and
velocity along with the known FA point to define the
boundary conditions to the TPBVP (equations (16),
(17) and (34)). Once the TPBVP has been defined, the
guidance algorithm must determine the optimal solu-
tion among all candidate trajectories equation (15) by
initializing the only varied parameter τf according to
equation (24). The optimal trajectory is found using
the single-parameter optimization problem outlined
in section 4 (equations (24) to (32)) with a non-
gradient optimization numerical algorithm based on
the golden section search and parabolic interpolation
method [15]. Upon completion of the optimization
problem, the desired yaw angle trajectory is known

from equation (29). Finally, the discrete optimal yaw
angle can be combined with the correction in equation
(33) and used in the proposed MPC algorithm in
equation (40) to determine the final control.

6 SIMULATION RESULTS

In all simulations the full non-linear parafoil model
is numerically integrated using a fourth-order Runge–
Kutta algorithm with time step of 0.05 s. The MPC
control algorithm described previously is used to track
ψc. Figures 7 and 8 show examples of the complete ter-
minal guidance strategy for an R of 37.5 m in winds of
−3.4 and −7.7 m/s. In both cases Tapp is 7.5 s, εfinal is
0.95, t1 − texit is 3.0 s, tpre is 6.0 s, Kturn is 1.0, ψ̇j max is
20 deg/s, and kψ̇ is 400, with two trajectory updates
made during the final turn. Results are shown from
the TIP (x0, y0, z0), which are (−33, 75, and −93 m) in

Fig. 7 Optimal real-dynamics-augmented guidance for
W = −3.7 m/s (� trajectory update)

Fig. 8 Optimal real-dynamics-augmented guidance for
W = −7.7 m/s (� trajectory update)
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Fig. 9 Monte Carlo simulation dispersion

Fig. 8 and (−137, 75, and −93 m) in Fig. 9. In both cases
the parafoil initially tracks the optimal trajectory; how-
ever, errors slowly build due to mismatch in the actual
dynamics and the model. At each update a new tra-
jectory is calculated that results in arrival at the FA.
Impact errors are 0.4 m in Fig. 7 and 0.5 m in Fig. 8.

The complete precision placement algorithm com-
bines energy management, an exit from energy man-
agement based on equation (9), estimation of a TIP
during homing using equation (7), and the optimal
turn followed by the FA. Monte Carlo simulations of
100 drops were done using the complete precision
placement algorithm with an away distance of 450 m,
a cycle distance of 125 m, an R of 37.5 m, and the tar-
get at the origin. The initial position and altitude were
nominally 760 m upwind of the target, at an altitude of
700 m, both normally distributed with a 50 m standard
deviation. Gaussian noise was injected into measured
position, altitude, and inertial sensors as summarized
in Table 1.

In addition to sensor errors, two sources of wind
variation were added to the simulation, varying direc-
tion and varying ground wind magnitude. Wind is
assumed to have a constant magnitude prior to ter-
minal guidance but varies linearly from W at the TIP

Table 1 Error statistics

Parameter 1σ

GPS bias (m) 2.0
GPS noise (m) 0.5
Altitude bias (m) 2.0
Altitude noise (m) 0.5
Roll, pitch, and yaw bias (degree) 2.0
Roll, pitch, and yaw noise (degree) 1.0
u, v, and w bias (m/s) 0.1
u, v, and w noise (m/s) 0.2
p, q, and r bias (degree/s) 1.0
p, q, and r noise (degree/s) 1.0

Fig. 10 Test results of precision placement algorithm

to W + WF at the ground. The wind W is normally
distributed with 4.75 m/s mean and 2.0 m/s standard
deviation while WF is 1.5 m/s (1σ). For the example
parafoil, this results in a nominal wind-to-airspeed
ratio of 0.70 with 25 per cent exceeding 1.0. Prevailing
wind is assumed by the system to travel down range
at a heading of zero degrees while the true wind head-
ing varies 15◦(1σ) in direction. Dispersion results are
shown in Fig. 9. The resulting circular error probable
(CEP) shown by the circle is 16.8 m and is defined by
the radius which includes 50 per cent of the impacts.

7 EXPERIMENTAL RESULTS

Test results of the small 2.3 kg parafoil outlined in
Appendix 2 are shown in Fig. 10 with an away dis-
tance of 200 m, cycle distance of 120 m, R of 30 m,
and the target at the origin. The parafoil is released
330 m down range and −240 m cross range at an alti-
tude of 610 m above ground. Wind was from 310◦

with magnitude varying from 4.9 to 6.7 m/s resulting
in a wind-to-airspeed ratio of 70 per cent to 98 per
cent. Energy management is exited at 211 m, 97 s after
release. Homing proceeds until the parafoil is 60 m
upwind of the target, 121 s after release, at an alti-
tude of 103 m. The final turn lasts 9.0 s until the FA
begins 58 m above ground. The impact occurs 7.4 m
away from the target 146 s after release.

8 CONCLUSIONS

A terminal guidance algorithm was developed for
parafoil precision placement in high wind-to-airspeed
ratios. Using the direct method of calculus of variations
and inverse dynamics in a virtual domain, the TPBVP
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is reduced to single-parameter optimization problem.
The result is an extremely efficient solution that is
easily solved in real-time. It was shown, that assum-
ing a constant final turn rate, resulted in an analytic
solution that could be used for calculating guidance
decisions prior to the final turn. Uncertainty during
terminal guidance from wind, sensors, and guidance
resulted in the system arriving only approximately at
the predicted location. Efficient computation allowed
the trajectory to be recomputed during the final turn
adding robustness to changing winds and tracking
errors. The algorithm was verified using a full 6 DoF
parafoil model and Monte Carlo simulations result-
ing in a circular error probable of 16.8 m. The final
test results were presented for a small 2.3 kg system
in strong winds where the final error was 7.4 m.

© Authors 2011
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APPENDIX 1

Notation

A, B, C discrete system state space matrices
A, B, C element of the apparent mass matrix
b canopy span
c̄ canopy mean chord
d̄ maximum brake deflection
Dswitch distance of the turn initial point with

respect to the target
HP discrete prediction horizon
iI , jI , kI inertial frame unit vectors
iT , jT , kT target frame unit vectors
kψ̇ turn rate penalty coefficient
Kturn final turn correction gain
L distance to target along target line
p, q, r parafoil roll, pitch, and yaw rates in the

body frame
P, Q, R elements of the apparent inertia matrix
Q, R positive semi-definite error and control

penalty matrices
R final turn radius
Sp parafoil canopy area
texit exit time for final turn
tpre length of time to apply final turn

correction
Tapp, T des

app final approach time and desired final
approach time

T final
app last calculated final approach time
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Tturn final turn time
u, v, w parafoil velocities expressed in the

body frame
U discrete optimal control vector
Va canopy airspeed
VG parafoil ground speed
Vh, Vv parafoil horizontal and vertical speed
W , WF target frame wind speed and ground

wind speed
x, y, z parafoil inertial positions in the target

frame
zstart altitude to exit energy management

� canopy incidence angle
δa asymmetric brake deflection
εfinal final approach efficiency
λ speed factor
τ virtual time
τf virtual time at completion of final turn
τ̄ virtual time scaled by the final virtual

time
φ, θ , ψ parafoil Euler roll, pitch, and yaw

angles
ψc commanded final turn angle
ψ̇max maximum desired final turn rate
ψc, ψ̂

c
desired and estimated output vectors

APPENDIX 2

Model parameters

System mass m (kg) 2.3
Steady-state aerodynamic

velocity Vh (m/s)
6.82

Canopy reference area
Sp(m2)

1.1

Canopy span b (m) 1.35
Canopy chord c̄ (m) 0.75
Incidence angle �

(degree)
−12

Inertia matrix elements
(kg m2)

Ixx = 0.423, Iyy = 0.401,
Izz = 0.052, Ixz =
0.027

Elements of the
apparent mass matrix
(kg)

A = 0.012, B = 0.032,
C = 0.423

Elements of the
apparent inertia
matrix (kg m2)

P = 0.054, Q = 0.13,
R = 0.0024

x-distance from mass
centre to apparent
mass centre xBM (m)

0.05

z-distance from mass
centre to apparent
mass centre zBM (m)

−1.1

Maximum brake
deflection d̄ (m)

0.13

Aerodynamic
coefficients

CD0 = 0.25, CDα2 = 0.12,
CY β = 0.23, CL0 =
0.091, CLα = 0.90

Cm0 = 0.35, Cmα =
−0.72, Cmq = −1.49

Clβ = −0.036, Clp =
−0.84, Clr = −0.082,
Clδa = −0.0035,

Cnβ = −0.0015, Cnp =
−0.082, Cnr = −0.27,
Cnδa = 0.0115.
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